that a 1.2 shift mechanism operates in $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{Fe}(\mathrm{CO})_{3}$.
(4) G. Rigatti, G. Baccalon, A. Ceccon, and G. Glacometti, J. Chem. Soc., Chem. Commun.. 1165 (1972).
(5) C. G. Kreiter. A. Maasbol. F. A. L. Anet. H. D. Kaesz, and S. Winsteln. J. Am. Chem. Soc.. 88, 3444 (1966).
(6) (a) F. A. L. Anet. H. D. Kaesz. A. Maasboi, and S. Winsteln. J. Am Chem. Soc. 89, 2489 (1967): (b) F. A. L. Anet. ibld., 89, 2491 (1967).
(7) R. Grubbs. R. Breslow. R. Herber. and S. J. Lippard. J. Am. Chem. Soc.. 89, 6864 (1967).
(8) B. Dickens and W. N. Llpscomb. J. Chem. Phys., 37, 2084 (1962).
(9) W. K. Bratton, F. A. Cotton. A. Davison, A. Musco, and J. W. Faller Proc. Natl. Acad. Sci. U.S.A., 58, 1324 (1967).
(10) F. A. Cotton. A. Davison, T. J. Marks, and A. Musco, J. Am. Chem Soc., 91, 6598 (1969).
(11) J. B. Stothers, "Carbon-13 NMR Spectroscopy", Academic Press. New York. N.Y., 1972. p 421.
(12) T. A. Manuel and F. G. A. Stone. J. Am. Chem. Soc.. 82, 366 (1960).
(13) M. D. Rausch and G. N. Schrauzer. Chem. Ind. (London). 957 (1959).
(14) B. F. G. Johnson. J. Lewis. and M. U. Twigg. J. Organomet. Chem.. 67, C75 (1974).
(15) L. Kruczynski, J. L. Martin, and J. Takats. J. Organomet. Chem., 80, C9 (1974).
(16) F. Calderazzo and F. L'Eplattenier, Inorg. Chem., 6, 1220 (1967).
(17) F. A. Cotton and R. Eiss. J. Am. Chem. Soc.. 91, 6593 (1969).
(18) F. A. Cotton. D. L. Hunter, and P. Lahuerta. J. Am. Chem. Soc.. 96, 7926 (1974).
(19) G. C. Levy and G. L. Nelson. 'CCarbon-13 Nuclear Magnetic Resonance for Organic Chemist:". Wiley. New York, N.Y.. 1972. pp 59-68.
(20) H. G. Preston. Jr., and J. C. Davls. Jr., J. Am. Chem. Soc., 88, 1585 (1966).
(21) H. L. Retcofsky, E. N. Frankel, and H. S. Gutowsky. J. Am. Chem. Soc., 88, 2710 (1966).
(22) J.-Y. Lallemand. P. Lazlo. C. Muzette. and A. Stockls. J. Organomet. Chem. 91, 71 (1975).
(23) F. A. Cotton. G. Deganello. D. L. Hunter. P. L. Sandrini, and B. R. Stults, unpublished data on various $\mathrm{Fe}(\mathrm{CO})_{3}$ and $\mathrm{Ru}\left(\mathrm{CO}_{3}\right.$ containing systems.
(24) J. Takats and L. Kruczynski. J. Am. Chem. Soc., 96, 932 (1974).
(25) C. G. Kreiter and M. Lang. J. Organomet. Chem., 55. C27 (1973).
(26) F. A. Cotton. D. L. Hunter. and P. Lahuerta. J. Am. Chem. Soc., 97, 1046 (1975).
(27) F. A. Cotton, D. L. Hunter, and P. Lahuerta. J. Organomet. Chem., 87, C42 (1975).
(28) F. A. Cotton, D. L. Hunter, and P. Lahuerta, Inorg. Chem., 14, 511 (1975).
(29) R. D. Adams. F. A. Cotton. W. R. Cullen. D. L. Hunter, and L. Mihichuk. Inorg. Chem., 14, 1395 (1975).
(30) The reasoning used to justify, or rationalize its occurrence for the $\left\langle\eta^{8}\right.$ $\left.\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{M}\left(\mathrm{CO}_{3}\right.$ species is such that it would be predicted to occur $\ln \left(\eta^{6}-\right.$ $\left.\mathrm{C}_{8} \mathrm{H}_{8}\right) \mathrm{ML}_{n}$ species in general. and also $\ln \left(\eta^{5}-\mathrm{C}_{7} \mathrm{H}_{7}\right) \mathrm{ML}_{n}$ species. These predictions are being tested by F.A.C. and John R. Kolb.
(31) See. for example. F. A. Cotton. "Chemical Applications of Group Theory". 2d ed. Wlley. New York, N.Y., 1971, pp 147-148.
(32) F. A. Cotton, J. W. Faller. and A. Musco. J. Am. Chem. Soc., 90, 1438 (1968).
(33) The more speculative the argument the brlefer it should be. Lemma: Totally speculative argument deserves no space at all.

Calculation of the Ground State Electronic Structures and Electronic Spectra of Di- and Trisulfide Radical Anions by the Scattered Wave-SCF-X α Method

F. Albert Cotton,* Jane B. Harmon, and Richard M. Hedges*
Contribution from the Department of Chemistry. Texas A\& M University. College Station, Texas 77843. Received July 21. 1975

Abstract

In order to get additional, and independent, evidence concerning the identity of the $\mathrm{S}_{n}{ }^{-}$species responsible for the blue color of lapis lazuli, sulfur-doped alkali halide crystals, and certain solutions of sulfur in alkalies, the SCF-scattered wave-X α method has been used to calculate the ground state electronic structures and the electronic absorption spectra of $\mathbf{S}_{2}{ }^{-} . \mathbf{S}_{3}{ }^{-}$, and $\mathbf{S}_{3}{ }^{2-}$. The latter was used as a check on the method, and excellent agreement between the observed (~ 24000 cm^{-1}) and calculated ($\sim 24500 \mathrm{~cm}^{-1}$) energies of the lowest allowed singlet-singlet electronic absorption band was obtained. For the $S_{2}{ }^{-}$and $S_{3}{ }^{-}$species the first allowed doublet-doublet transition is predicted to occur at $17300-20300 \mathrm{~cm}^{-1}$ (depending on structure parameters) and $12000-13200 \mathrm{~cm}^{-1}$ (again depending on structure parameters). Since the blue sulfur-containing systems have an absorption band with an origin at ca. $13500 \mathrm{~cm}^{-1}$ we conclude that the blue chromophore is $\mathrm{S}_{3}{ }^{-}$. Likewise, sulfur-doped alkali halide crystals that are pink have an absorption band with an origin at ca. $21000 \mathrm{~cm}^{-1}$ so that the pink color may be attributed to the presence of $\mathrm{S}_{2}{ }^{-}$.

The problem we are addressing here has a history dating from the time of Marco Polo (1271) and before. This is the question of how to account for the deep blue color of minerals known from early times as lapis lazuli, and, in the synthetic forms now available, as ultramarine. These substances have long been prized for their beautiful color, and lapis lazuli is still collected from nature today, the principal regions of occurrence being Badakhshan in northeast Afganistan and near the western end of Lake Baikal in the USSR.

In recent times it has been established that the principal component of lapis lazuli and ultramarines is a silicate mineral of the sodalite type ${ }^{1}$ containing small amounts of sulfur. It has also been known for some time that a blue color develops when sulfur is heated with water and a trace of basic salt. ${ }^{2-4}$ Blue solutions are also formed by sulfur in alkali halide melts, ${ }^{5,6}$ on dissolving alkali polysulfides in basic solvents such as dimethylformamide ${ }^{7,8}$ and dimethyl sulfoxide, ${ }^{9}$ upon doping sulfur into borate glasses, ${ }^{10}$ upon electrochemical reduction of S_{8} in dimethyl sulfoxide, ${ }^{11,12}$ and
upon heating alkali halide crystals in sulfur vapors, ${ }^{13.14}$ although with some crystals a pink color rather than the deep blue color is formed. In all cases which have been examined spectrophotometrically, the cause of the blue color has been shown to be an absorption band centered at about 625 nm ($16000 \mathrm{~cm}^{-1}$).

Efforts to identify the species responsible for the blue color have been numerous. Lux and co-workers ${ }^{7.9}$ attributed it to neutral molecules $S_{x}, \boldsymbol{x}=2,3,4$. Merritt and Sawyer ${ }^{11}$ once suggested that $S_{8}{ }^{-}$is the species formed by electrochemical reduction of elemental sulfur in dimethyl sulfoxide but later retracted ${ }^{15}$ this suggestions and agreed with Bonnaterre and Cauquis ${ }^{12}$ who showed that the oxidation number in this system is $-1 / 3$ and proposed $\mathrm{S}_{6}{ }^{2-}$ as the chromophore. Chivers and Drummond ${ }^{16.17}$ agreed that the blue species corresponds formally to $\mathrm{S}_{6}{ }^{2-}$ but proposed that its real identity is $\mathrm{S}_{3}{ }^{-}$. Gruen, McBeth, and Zielen ${ }^{6}$ also propose that the blue color is caused by $\mathrm{S}_{3}{ }^{-}$, but Giggenbach ${ }^{4.8 .10}$ has argued in favor of $\mathrm{S}_{2}{ }^{-}$. Hofmann et al. ${ }^{18}$ in discussing ultramarine specifically suggest that either $\mathrm{S}_{2}{ }^{-}$
or $\mathrm{S}_{3}{ }^{-}$, or both, might be the blue chromophore.
A study conducted by Chivers and Drummond ${ }^{16}$ on solutions of polysufides in hexamethylphosphoramide and very dilute solutions of elemental sulfur gave similar spectra with the same relative intensities of the peaks at 16100 and $36200 \mathrm{~cm}^{-1}$. After electrical transference, identical spectra are obtained from the blue solutions, which was taken to indicate that the two peaks are due to one negatively charged species. It was suggested that the sulfur is being reduced rather than disproportionating to give the blue species. An analysis of the dependence of the absorption coefficient at $16100 \mathrm{~cm}^{-1}$ on concentration, in terms of possible equilibria between various $\mathrm{S}_{x}{ }^{2-}$ and $\mathrm{S}_{x}{ }^{-}$species, led Chivers and Drummond to conclude that the $\mathrm{S}_{3}-$ ion is the blue species.

A study of a $2.5 \times 10^{-3} \mathrm{M}$ solution of sodium tetrasulfide in a $0.2 \mathrm{M} \mathrm{HS}^{-}-\mathrm{H}_{2} \mathrm{~S}$ buffer solution at pH 5.6 as a function of temperature has been reported by Giggenbach. ${ }^{4}$ At room temperature, the absorption spectra of aqueous polysulfide solutions show two bands ${ }^{19.20}$ in the near-uv region at 25000 and $31000 \mathrm{~cm}^{-1}$. Up to about $100^{\circ} \mathrm{C}$, these two bands were observed to move toward lower energies without any significant change in either the shape or the molar absorptivity at the absorption maxima. At temperatures above $100^{\circ} \mathrm{C}$, however, a new band appeared around $16500 \mathrm{~cm}^{-1}$ and increased in intensity with increasing temperature, causing the color of the solution to change from yellow through green to blue. The temperature dependence of the spectra for a series of sodium tetrasulfide solutions in a number of dimethylformamide (DMF) and water mixtures demonstrated that decreasing DMF content led to an increase in the temperature required to produce a certain amount of the blue species as indicated by its characteristic absorption. Therefore, the species formed in aqueous solution was assumed to be the $\mathrm{S}_{2}{ }^{-}$ion, and the equilibrium at elevated temperatures was formulated as

$$
S_{3} S^{2-}=2 S_{2}-
$$

with the possibilities of the blue color being due to uncharged ${ }^{21}$ or doubly charged ${ }^{22}$ particles excluded. On the other hand, Giggenbach argued that the nonexistence of polysulfide ions $\mathrm{S}_{n} \mathrm{~S}^{2-}$ with $n>5$ in aqueous solution ${ }^{23}$ requires that the number of sulfur atoms (m) of the dissociation product $\mathrm{S}_{m}{ }^{-}$not exceed three, ${ }^{11}$ which reduces the number of possible species ${ }^{23}$ to $\mathrm{S}_{2}{ }^{-}$and $\mathrm{S}_{3}{ }^{-}$. Then, in view of the very small amount of $\mathrm{S}_{3}{ }^{-}$ion observed ${ }^{8.12}$ in DMF and dimethyl sulfoxide (DMSO) solutions he suggested that $\mathrm{S}_{2}{ }^{-}$predominates in these systems. Electronic spin resonance investigations on sulfur-doped borate glasses ${ }^{10.24}$ and on ultramarine ${ }^{25}$ reveal the existence of significant amounts of $\mathrm{S}_{3}-$ ions. Since no additional absorption band attributable to this ion is detected in these systems, Giggenbach suggested that the absorption spectrum of $\mathrm{S}_{3}{ }^{-}$is similar to that of $\mathrm{S}_{2}{ }^{-}$, thus implying that $\mathrm{S}_{3}{ }^{-}$is also blue. ${ }^{23}$

A study of Raman spectra of $\mathrm{S}_{2}{ }^{-}$and $\mathrm{S}_{3}{ }^{-}$doped in alkali halide crystals is reported by Holzer, Murphy, and Bernstein. ${ }^{26}$ Their findings support previous identification of a diatomic species $\mathrm{S}_{2}^{-27.28}$ and a bent triatomic species $\mathrm{S}_{3}-{ }^{-13.14}$ The observed Raman spectra of sulfur-doped KI show two bands at 543 and $594 \mathrm{~cm}^{-1}$. The visible absorption spectrum of this crystal shows two bands at approximately 25000 and $16000 \mathrm{~cm}^{-1}$. Irradiation of the crystal with ultraviolet light causes the Raman band at $543 \mathrm{~cm}^{-1}$ and the visible absorption at $16000 \mathrm{~cm}^{-1}$ to disappear. This suggests the following association: $594 \mathrm{~cm}^{-1}$ with 25000 cm^{-1} and $543 \mathrm{~cm}^{-1}$ with $16000 \mathrm{~cm}^{-1}$. After irradiation, the ir absorption band previously found at $585 \mathrm{~cm}^{-1}$ was gone, indicating that the species remaining is diatomic and symmetrical. ESR indicated that the remaining species was $\mathrm{S}_{2}{ }^{-}$, as previously identified. ${ }^{28}$ The species which disap-
pears on irradiation has a Raman band at $546 \mathrm{~cm}^{-1}$, an ir absorption band at $585 \mathrm{~cm}^{-1}$, and a visible absorption band at $16000 \mathrm{~cm}^{-1}$. The noncoincident ir and Raman frequencies indicate that this species has more than two atoms. Further evidence for associating the Raman line at 543 cm^{-1} with the visible absorption band at $16000 \mathrm{~cm}^{-1}$ was obtained from the following observation in which a resonance Raman enhancement effect is involved. When the Raman exciting line was moved from 20500 to 19400 cm^{-1}, that is, more into the $16000-\mathrm{cm}^{-1}$ visible band, it was the $543-\mathrm{cm}^{-1}$ Raman band that gained intensity while the $594-\mathrm{cm}^{-1}$ Raman band lost intensity.

Holzer and co-workers ${ }^{26}$ predict that the shift in vibrational frequencies of the $\left({ }^{32} \mathrm{~S}^{34} \mathrm{~S}\right)^{-}$band from the ${ }^{32} \mathrm{~S}_{2}{ }^{-}$ band should be -1.56%. For doped NaCl . a band at 531 cm^{-1} is observed at higher resolution. A shoulder due to $\left({ }^{32} \mathrm{~S}^{34} \mathrm{~S}\right)^{-}$is shifted $5.6 \mathrm{~cm}^{-1}$, that is, only $-1.0 \pm 0.1 \%$. They take this as further evidence that this band is not due to a diatomic species. These results also suggest that the band is not due to a linear triatomic species, in which case the same isotopic shift as in the diatomic case should then be observed, since the Raman band is due to the symmetric stretch in which only the two outer atoms move. Previous ESR studies ${ }^{29}$ suggesting the presence of $\mathrm{S}_{3}{ }^{-}$in the mineral ultramarine are supported by Holzer and co-workers through their observation of a Raman band at $546 \mathrm{~cm}^{-1}$ and a weak shoulder at $570 \mathrm{~cm}^{-1}$. The band at $546 \mathrm{~cm}^{-1}$ was not observed in sodalite, which has the same host structure but contains no sulfur.

From the foregoing summary it is clear that although the sulfur-polysulfide systems have been studied extensively, the identity of the blue species has not been conclusively determined. While the case in favor of the $\mathrm{S}_{3}{ }^{-}$ion appears to be rather good, we feel that the evidence is still not conclusive. A study of the electronic structures of the polysulfide radical ions was therefore undertaken using the SCF-X α scattered-wave method with the objective of obtaining independent evidence concerning the spectral assignments. It is our opinion that this method is well suited to the treatment of the small, homonuclear species with which we are here concerned.

Procedure for Calculations

The SCF-X α scattered-wave method ${ }^{30}$ was used to determine the electronic structures of the polysulfide ions $\mathrm{S}_{3}{ }^{-}$, $\mathrm{S}_{2}{ }^{-}$, and $\mathrm{S}_{3}{ }^{2-}$. The coordinate systems used for the trisulfide ions and the disulfide ion are shown in Figure 1. The outer sphere was centered at the weighted-average position of all the atoms, where the weights were the number of valence electrons in the neutral free atoms. The α exchange parameter for sulfur was taken from the tabulation of Schwarz. ${ }^{31}$ For the extramolecular and intersphere regions, the atomic α 's were averaged with the same weights used in determining the outer sphere center. All of the calculations performed on the polysulfides include s-, p-, and d-type spherical harmonics on sulfur to expand the wave functions. Overlapping atomic and outer sphere radii were obtained by the nonempirical procedure recently suggested by Norman. ${ }^{32}$ Throughout the calculation, the stabilizing influence of a surrounding crystal lattice on the polysulfide ions was simulated by adding to the potential that of a "Watson sphere ${ }^{\prime 33}$ with radius equal to that of the outer sphere. In each calculation, the final SCF ground state potential was used to search for excited state energy levels up to a maximum energy of 0.0020 Ry . This potential was then used as the starting potential for SCF calculations of the electronic transition energies using Slater's transition-state concept. ${ }^{30 \mathrm{a}, 34}$

Figure 1. Coordinate systems used for (a) the $\mathrm{S}_{2}{ }^{-}$ion and. (b) the $\mathrm{S}_{3}{ }^{-}$ and $\mathrm{S}_{3}{ }^{2-}$ ions.

SCF Calculation of $\mathbf{S}_{\mathbf{3}}{ }^{-}$. Two complete calculations (hereafter $\mathrm{S}_{3}{ }^{-}(1)$ and $\mathrm{S}_{3}{ }^{-}(2)$) were performed on $\mathrm{S}_{3}{ }^{-}$. The first, $S_{3}{ }^{-}(1)$, assumed the bond length $S-S=2.10 \AA$ and the second, $\mathrm{S}_{3}{ }^{-}(2)$, assumed $\mathrm{S}-\mathrm{S}=2.00 \AA$. In both cases the angle formed by the three sulfur atoms was set at $110^{\circ} .{ }^{17.35}$ Coordinates, α parameters, and sphere radii are summarized in Table I. Symmetry ($C_{2 v}$) was employed to factor the secular matrix into a_{1}, a_{2}, b_{1}, and b_{2} blocks. In both calculations the initial molecular potential was constructed by superposition of SCF-X α charge densities for free $S^{0.33-}$. The "Watson sphere" used in these calculations contained one unit of positive charge uniformly distributed over its surface, with its radius equal to that of the outer sphere. The ground state one-electron eigenvalues converged within 0.10% in 32 and 38 iterations for $\mathrm{S}_{3}{ }^{-}(1)$ and $\mathrm{S}_{3}{ }^{-}(2)$, respectively. An average of the former and new potentials in a 9:1 ratio, respectively, for a given iteration was used as the starting potential for the next iteration. Core levels (sulfur $1 \mathrm{~s}, 2 \mathrm{~s}$, and 2 p) were frozen through the first 19 iterations for $\mathrm{S}_{3}{ }^{-}$(1) and first 18 iterations for $\mathrm{S}_{3}{ }^{-}$(2), and thereafter calculated explicitly using only the potential within the sphere surrounding the atom in question. The final ground state potential was used as the starting point for SCF calculations of transition energies. These calculations were done in spin-unrestricted form to obtain predictions for the electronic excitations.

SCF Calculation of $\mathbf{S}_{\mathbf{2}}{ }^{-}$. Two complete calculations (hereafter $\mathrm{S}_{2}^{-}(1)$ and $\mathrm{S}_{2}{ }^{-}(2)$) were performed on $\mathrm{S}_{2}{ }^{-}$. The first, $S_{2}{ }^{-}(1)$, assumed the bond length $S-S=2.10 \AA$ and the second assumed $\mathrm{S}-\mathrm{S}=2.25 \AA$. In both cases, the outer sphere was centered at the inversion center of the molecule. Coordinates, α parameters, and sphere radii are summarized in Table I. The molecular orbitals were constructed according to the conventional methods used for homonuclear diatomics, and the secular matrix was factored into $\sigma_{\mathrm{g}}, \sigma_{\mathrm{u}}, \pi_{\mathrm{g}}$, and π_{u} symmetry blocks. In both cases the initial molecular potential was constructed by superposition of $\mathrm{SCF}-\mathrm{X} \alpha$ charge densities for free $\mathrm{S}^{0.5-}$. The "Watson sphere" used in these calculations contained one unit of positive charge uniformly distributed over its surface, with its radius equal to that of the outer sphere. The ground state one-electron eigenvalues converged within 0.10% in 38 iterations and 33 iterations for S_{2}^{-}(1) and $\mathrm{S}_{2}{ }^{-}$(2), respectively. An average of the former and new potentials in a $9: 1$ ratio, respectively, for a given iteration was used as the starting potential for the next iteration. Core levels (sulfur 1s, 2s, and $2 p$) were frozen through the first five iterations for both $\mathrm{S}_{2}{ }^{-}(1)$ and $\mathrm{S}_{2}{ }^{-}(2)$, and thereafter calculated explicitly using only the potential within the sphere surrounding the atom in question. The final ground state potential was used as the starting point for SCF calculations of transition energies. These calculations were done in spin-unrestricted form to obtain predictions for the electronic excitations.

SCF Calculation of $\mathbf{S 3}_{3}{ }^{\mathbf{2 -}}$. One complete calculation was performed on $\mathrm{S}_{3}{ }^{2-}$ employing experimental bond parame-

Table I. Atomic Coordinates, α Parameters, and Sphere Radii (Atomic Units)

Species	Region	x	y	z	α	R
$\mathrm{S}_{3}{ }^{-(1)}$	S_{1}	0	0	0	0.72475	2.05832
	S_{2}	-3.25071	0	-2.27618	0.72475	2.23086
	S_{3}	3.25071	0	-2.27618	0.72475	2.23086
	Extramolecular		0	-1.51750	0.72475	5.40235
$\mathrm{S}_{3}{ }^{-}(2)$	S_{1}	0	0	0	0.72475	1.87000
	S_{2}	-3.09595	0	-2.16781	0.72475	2.03184
	S_{3}	3.09595	0	-2.16781	0.72475	2.03184
	Extramolecular	0	0	-1.44520	0.72475	5.14727
$\mathrm{S}_{2}{ }^{-}(1)$	S_{1}	0	0	1.98421	0.72475	2.04847
	S_{2}	0	0	-1.98421	0.72475	2.04847
	Extramolecular	0	0	0	0.72475	3.96843
$\mathrm{S}_{2}{ }^{-}(2)$	S_{1}	0	0	2.12594	0.72475	2.19479
	S_{2}	0	0	-2.12594	0.72475	2.19479
	Extramolecular	0	0	0	0.72475	4.25189
$\mathrm{S}_{3}{ }^{\text {- }}$	S_{1}	0	0	0	0.72475	2.05832
	S_{2}	-3.17959	0	-2.52940	0.72475	2.23086
	S_{3}	3.17959	0	-2.52940	0.72475	2.23086
	Extramolecular	0	0	-1.68628	0.72475	5.40256

ters, ${ }^{36-38}$ namely, $S-S=2.15 \AA$ and an SSS angle of 103°. Coordinates, α parameters, and sphere radii are summarized in Table I. Again, symmetry ($C_{2 v}$) was employed to factor the secular matrix into a_{1}, a_{2}, b_{1}, and b_{2} blocks. The initial molecular potential was constructed by superposition of SCF-X α charge densities for free $\mathrm{S}^{0.66-}$. The "Watson sphere" in these calculations contained two units of positive charge uniformly distributed over its surface, with its radius equal to the outer sphere radius. The ground state one-electron eigenvalues converged within 0.10% in 13 iterations. An average of the former and new potentials in a $9: 1$ ratio, respectively, for a given iteration was used as the starting potential for the next iteration. Core levels (sulfur 1 s , 2 s , and $2 p$) were frozen through the first eight iterations and thereafter calculated explicitly using only the potential within the sphere surrounding the atom in question. The final ground state potential was used as the starting point for SCF calculations of transition energies. These calculations were done first in spin-restricted form, to obtain a weighted-average energy for the singlet and triplet components of a given transition, and then in spin-unrestricted form, to obtain a separate prediction for the triplet. Combination of the two results gives an explicit prediction of the singlet transition energy.

Results

The $\mathbf{S}_{3}{ }^{-}$Calculations. The two calculations, $\mathrm{S}_{3}{ }^{-}(1)$ and $\mathrm{S}_{3}{ }^{-}(2)$, were performed in spin-unrestricted form because of the open-shell nature of the ion. Calculated ground state valence orbital energies and charge distributions are summarized for $\mathrm{S}_{3}^{-}(1)$ and $\mathrm{S}_{3}{ }^{-}(2)$ in Table II. Calculated core one-electron energies are given in Table Ill. The spin-polarized SCF-X α electronic energy levels of the $\mathrm{S}_{3}{ }^{-}(2)$ ion are shown in Figure 2. The levels are labeled according to the irreducible representations of the $C_{2 v}$ symmetry group. The highest occupied level in the ground state is $2 \mathrm{~b}_{2} \uparrow$. Summarized in Table IV are the calculated all-electron energies and charge distributions. A contour map of the one-electron wave function for the highest occupied level $\left(2 b_{2} \uparrow\right)$ in $\mathrm{S}_{3}{ }^{-}$(2) appears as Figure 3. It should be emphasized that this contour map has not been generated from linear combinations of analytic atomic orbitals of the type traditionally used in Hartree-Fock molecular orbital theory. It has been generated simply from the numerical values of the wave

Table II. Ground State Valence Energy Levels ${ }^{a}$ (Rydbergs) and Charge Distribution ${ }^{b}$ for $\mathrm{S}_{3}{ }^{-c}$

Level	Energy	$\% \mathrm{~S}_{1}$	$\% \mathrm{~S}_{2,3}$	Level	Energy	$\% \mathrm{~S}_{1}$	$\% \mathrm{~S}_{2,3}$
$4 \mathrm{~b}_{1} \downarrow$	-0.140, -0.108	29.3, 24.9	34.7, 29.9	$1 \mathrm{~b}_{2} \downarrow$	-0.634, -0.665	34.4, 29.3	23.7, 23.1
$4 \mathrm{~b}_{1} \uparrow$	-0.160, -0.131	29.6, 25.7	35.5, 31.2	$1 b_{2} \uparrow$	-0.654, -0.682	35.6, 32.2	22.9, 29.1
$5 a_{1} \downarrow$	-0.194, -0.176	20.7, 12.7	37.1, 23.4	$3 \mathrm{a}_{1} \downarrow$	-0.661, -0.689	37.3, 32.5	29.6, 23.3
$5 \mathrm{a}_{1} \uparrow$	-0.212, -0.194	21.2, 14.1	38.6, 26.4	$3 \mathrm{a}_{1} \uparrow$	-0.682, -0.708	38.1, 33.3	29.3, 28.7
$2 \mathrm{~b}_{2} \downarrow$	-0.404, -0.400	26.5, 25.7	40.3, 35.4	$2 \mathrm{~b}_{1} \downarrow$	-0.706, -0.724	31.6, 27.8	43.4, 42.4
$2 \mathrm{~b}_{2} \uparrow$	-0.424, -0.425	25.9, 25.1	$41.3,36.5$	$2 b_{1} \uparrow$	-0.727, -0.749	32.0, 28.4	43.2, 42.2
$3 \mathrm{~b}_{1} \downarrow$	-0.465, -0.472	0.9, 1.1	67.6,62.9	$2 \mathrm{a}_{1} \downarrow$	-1.124, -1.125	26.9, 26.4	54.6, 50.3
$3 \mathrm{~b}_{1} \uparrow$	-0.482, -0.492	$0.9,1.1$	67.8, 63.2	$2 \mathrm{a}_{1} \uparrow$	-1.145, - 1.151	26.3, 25.8	55.3, 51.0
$1 \mathrm{a}_{2} \downarrow$	-0.493, -0.510	0.7, 0.7	$64.0,58.9$	$1 \mathrm{~b}_{1} \downarrow$	-1.268, -1.298	5.8, 6.3	$76.5,71.7$
$4 \mathrm{a}_{1} \downarrow$	-0.497, -0.512	7.0, 8.6	57.5, 50.8	$1 b_{1} \uparrow$	-1.287, - 1.321	$5.9,6.5$	$76.5,71.6$
$1 \mathrm{a}_{2} \uparrow$	-0.511, -0.523	$0.7,0.8$	64.4, 59.2	$1 \mathrm{a}, \downarrow$	-1.464, -1.512	$48.9,44.1$	$31.0,31.2$
$4 \mathrm{a}_{1} \uparrow$	$-0.515,-0.533$	6.7, 8.2	58.0, 51.4	$1 \mathrm{a}_{1} \uparrow$	-1.488, -1.541	49.8, 45.2	30.3, 30.2

${ }^{a}$ The highest occupied level is $2 \mathrm{~b}_{2} \uparrow .{ }^{b}$ The remainder of the electronic charge is distributed between the intersphere and extramolecular regions (not listed here). ${ }^{C}$ Results for $\mathrm{S}_{3}^{-}(1)$ and $\mathrm{S}_{3}{ }^{-}(2)$ are given side by side in that order.

Table III. Ground State Core Energy Levels (Ry) for $\mathrm{S}_{3}{ }^{-}$

	Energy	
Level	$\mathrm{S}_{3}{ }^{-}(1)$	$\mathrm{S}_{3}{ }^{-}(2)$
$\mathrm{S}_{1} 1 \mathrm{~s} \uparrow$	-177.3774	-177.4503
$\mathrm{~S}_{1} 1 \mathrm{~s} \downarrow$	-177.3722	-177.4432
$\mathrm{~S}_{1} 2 \mathrm{~s} \uparrow$	-15.0957	-15.1354
$\mathrm{~S}_{1} 2 \mathrm{~s} \downarrow$	-15.0895	-15.1271
$\mathrm{~S}_{1} 2 \mathrm{p} \uparrow$	-11.3300	-11.3732
$\mathrm{~S}_{1} 2 \mathrm{p} \downarrow$	-11.3225	-11.3630
$\mathrm{~S}_{2,3} 1 \mathrm{~s} \uparrow$	-177.0650	-177.0079
$\mathrm{~S}_{2,3} 1 \mathrm{~s} \downarrow$	-177.0617	-177.0040
$\mathrm{~S}_{2,3} 2 \mathrm{~s} \uparrow$	-14.9785	-15.0278
$\mathrm{~S}_{2,3} 2 \mathrm{~s} \downarrow$	-14.9748	-15.0233
$\mathrm{~S}_{2,3} 2 \mathrm{p} \uparrow$	-11.1965	-11.2375
$\mathrm{~S}_{2,3} 2 \mathrm{p} \downarrow$	-11.1919	-11.2320

Table IV. Ground State Total Energies (Ry) and Charge
Distribution (electrons) for $S_{3}^{-}(1)$ and $S_{3}^{-}(2)$

	$\mathrm{S}_{3}{ }^{-}(1)$	$\mathrm{S}_{3}^{-}-(2)$
Total energy	-2378.010	-2377.489
Kinetic energy	2311.102	2308.929
Potential energy	-4689.109	-4686.414
Total charge in various regions:		
\quad Center sulfur	14.153	13.832
Each terminal sulfur	14.685	14.390
Extramolecular	0.758	0.892
\quad Intersphere	2.492	2.889

Table V. Calculated Electronic Spectra of $\mathrm{S}_{3}{ }^{-}$

	Calculated energy, cm^{-1}	
Transition	$\mathrm{S}_{3}^{-}(1)$	$\mathrm{S}_{3}^{-(2)}$
$1 \mathrm{a}_{2} \rightarrow 2 \mathrm{~b}_{2}$	10501^{a}	13190^{a}
$4 \mathrm{a}_{1} \rightarrow 2 \mathrm{~b}_{2}$	10512^{a}	12192^{b}
$2 \mathrm{~b}_{2} \rightarrow 5 \mathrm{a}_{1}$	$23264 b$	25283^{b}

a These values were calculated to self-consistency using the transi-tion-state procedure. ${ }^{30 c, d} b$ These values were obtained as a first approximation to the electronic transition by taking the difference between the two energy levels involved; however, the transitionstate procedure was not employed. The first approximation gives a slightly lower value than that obtained using the transition-state method. For example, for $\mathrm{S}_{3}{ }^{-}(1)$, a first approximation to the transition $4 \mathrm{a}_{1} \rightarrow 2 \mathrm{~b}_{2}$ is $10206 \mathrm{~cm}^{-1}$ as compared to $10512 \mathrm{~cm}^{-1}$ by the transition-state procedure.
function at 6561 grid points within the area of the plot. Calculated electronic excitation energies for spin-allowed and symmetry-allowed transitions are given in Table V.

The $\mathbf{S}_{\mathbf{2}}{ }^{-}$Calculations. Again, the two calculations, $\mathrm{S}_{2}{ }^{-}(1)$ and $\mathrm{S}_{2}{ }^{-}(2)$, were performed in spin-unrestricted form because of the open-shell nature of the molecules. Calculated ground state valence orbital energies and charge

Figure 2. Ground state valence energy levels for the $S_{3}-(2)$ ion. Corresponding SCF-X α energy levels of the free atoms are shown for comparison. The highest occupied level is $2 \mathrm{~b}_{2} \uparrow$.
distributions are summarized in Table V1. Calculated core one-electron energies are given in Table VII. Spin-polarized SCF-X α electronic energy levels of the $\mathrm{S}_{2}{ }^{-}(1)$ ion are shown in Figure 4. The highest occupied level in the ground state is $1 \pi_{g} \downarrow$. Calculated all-electron energies and charge distributions are summarized in Table VIII. A contour map of the one-electron wave function for the highest occupied energy level $1 \pi_{g} \downarrow$ for $S_{2}-(1)$ appears as Figure 5. This map has been generated from the numerical values of the wave function at 6561 grid points within the area of the plot. Calculated electronic excitation energies for spin-allowed and symmetry-allowed transitions are given in Table IX.

The $\mathbf{S}_{3}{ }^{\mathbf{2 -}}$ Calculation. The ground state valence orbital energies and charge distributions for $\mathrm{S}_{3}{ }^{2-}$ are summarized in Table X. Calculated core one-electron energies are given in Table XI. The SCF-X α electronic energy levels for the ion are shown in Figure 6. The highest occupied level in the ground state is $2 b_{2}$. Summarized in Table XII are the calculated all-electron energies and charge distributions. The energy of the lowest allowed electronic transition, $2 \mathrm{~b}_{2} \rightarrow$ $5 a_{1}$, was calculated self-consistently to be $24482 \mathrm{~cm}^{-1}$.

Discussion

The Electronic Structure of $\mathrm{S}_{3}{ }^{-}$. There is no direct structural information on the $\mathrm{S}_{3}{ }^{-}$ion. Walsh's rules ${ }^{35}$ or empiri-

Figure 3. Contour map of the $2 b_{2} \uparrow$ wave function of $S_{3}{ }^{-}(2)$. Beginning with the nodal line the contours increase to $0.01,0.03,0.06$, and 0.10 (electron/bohr ${ }^{3}$) ${ }^{1 / 2}$. The grid is in bohrs; S_{I} is at the bottom. Discontinuities are the result of noise in the calculation.

Table VI. Ground State Valence Energy Levels ${ }^{a}$ (Ry) and Charge Distribution ${ }^{b}$ for $\mathrm{S}_{2}{ }^{-}$

	Energy			
Level	$\mathrm{S}_{2}-(1)$	$\mathrm{S}_{2}-(2)$	$\mathrm{S}_{2}-(1)$	$\mathrm{S}_{2}{ }^{-}(2)$
$2 \sigma_{\mathrm{u}} \downarrow$	-0.086	-0.153	68.5	71.8
$2 \sigma_{\mathrm{u}} \uparrow$	-0.115	-0.182	70.6	72.4
$1 \pi_{\mathrm{g}} \downarrow$	-0.353	-0.364	60.7	66.2
$1 \pi_{\mathrm{g}} \uparrow$	-0.382	-0.392	61.3	66.8
$1 \pi_{\mathrm{u}} \downarrow$	-0.538	-0.508	52.2	57.9
$1 \pi_{\mathrm{u}} \uparrow$	-0.553	-0.535	69.3	58.6
$2 \sigma_{\mathrm{g}} \downarrow$	-0.566	-0.542	52.8	73.0
$2 \sigma_{\mathrm{g}} \uparrow$	-0.583	-0.570	69.7	73.4
$1 \sigma_{\mathrm{u}} \downarrow$	-1.066	-1.078	77.6	82.5
$1 \sigma_{\mathrm{u}} \uparrow$	-1.098	-1.109	77.8	82.7
$1 \sigma_{\mathrm{g} \downarrow}$	-1.304	-1.261	75.9	80.3
$1 \sigma_{\mathrm{g}} \uparrow$	-1.336	-1.291	76.1	80.5

${ }^{a}$ The highest occupied level is $1 \pi_{g} \downarrow .{ }^{b}$ The remainder of the electronic charge is distributed between the intersphere and extramolecular regions (not listed here).

Table VII. Ground State Core Energy Levels (Ry) for $\mathrm{S}_{2}{ }^{-}$

	Energy	
Level	$\mathrm{S}_{2}{ }^{-}(1)$	$\mathrm{S}_{2}{ }^{-}(2)$
$\mathrm{S}_{1,2} 1 \mathrm{~s} \uparrow$	-176.9613	-176.9971
$\mathrm{~S}_{1,2} 1 \mathrm{~s} \downarrow$	-176.9561	-176.9721
$\mathrm{~S}_{1,2} 2 \mathrm{~s} \uparrow$	-15.0071	-14.9912
$\mathrm{~S}_{1,2} 2 \mathrm{~s} \downarrow$	-15.0006	-14.9851
$\mathrm{~S}_{1,2} 2 \mathrm{p} \uparrow$	-11.2157	-11.2022
$\mathrm{~S}_{1,2} 2 \mathrm{p} \downarrow$	-11.2077	-11.1947

cal comparison ${ }^{38}$ with the isoelectronic $\mathrm{O}_{3}{ }^{-}$and ClO_{2} species naturally leads to the expectation that $\mathrm{S}_{3}{ }^{-}$must be bent. On the basis of structural data ${ }^{38}$ for various $S_{x}{ }^{2-}$ it was expected that the S-S distance would be ca. $2.10 \AA$ and the angle ca. 110°. In order to test whether the results might depend seriously upon the choice of bond length the calculation was also carried out with a distance of $2.00 \AA$. Dependence on angle in the range $105-115^{\circ}$ was expected to be less than on interatomic distance, so it was decided not to vary the angle unless the dependence on distance proved to be great.

Inspection of Table II and Figure 2 shows that the

Figure 4. Ground state valence energy levels for $\mathrm{S}_{2}{ }^{-}$(1). Curresponding $\mathrm{SCF}-\mathrm{X} \alpha$ energy levels of the free atoms are shown for comparison. The highest occupied level is $1 \pi_{g} \downarrow$.

Table VIII. Ground State Total Energies (Ry) and Charge Distribution (electrons) for $\mathrm{S}_{2}{ }^{-}$

	$\mathrm{S}_{2}{ }^{-}(1)$	$\mathrm{S}_{2}{ }^{-}(2)$
Total energy	-1581.358	-1581.654
Kinetic energy	1510.002	1512.214
Potential energy	-3091.360	-3096.869
Total charge in various regions:		
\quad Each sulfur	14.199	14.526
Extramolecular	1.222	0.951
Intersphere	1.817	1.609

Table IX. Calculated Electronic Spectra of $\mathrm{S}_{2}{ }^{-}$

	Calculated energy, cm^{-1}	
Transition	$\mathrm{S}_{2}{ }^{-}(1)$	$\mathrm{S}_{2}{ }^{-}(2)$
$1 \pi_{\mathrm{u}} \rightarrow 1 \pi_{\mathrm{g}}$	$20279 a$	$15846 a$
$1 \pi_{\mathrm{g}} \rightarrow 2 \pi_{\mathrm{u}}$	$29289 b$	$23111 b$

${ }^{a}$ These values were calculated to self-consistency using the transi-tion-state procedure. ${ }^{30} \mathrm{c}, \mathrm{d} b$ These values were obtained as a first approximation to the electronic transition by taking the difference between the two levels involved; however, the transition-state procedure was not employed. Usually the first approximation gives a slightly lower value than that obtained using the transition-state method; however, in this case, the values obtained from the first approximation were exactly those resulting from the transition-state procedure.
ground state valence energy levels for $S_{3}-$ fall into four distinct categories. Between -1.60 and -1.10 Ry is a group of levels whose provenance is mainly the 3 s atomic orbitals. These levels are not strongly bonding molecular orbitals because the electrons in the 3 s shell are tightly bound and do not overlap effectively. The energy levels between -0.75 and -0.60 Ry represent $S-S$ bonding orbitals and are chiefly sulfur 3 p-like in origin. The $2 b_{1}$ and $3 a_{1}$ orbitals correspond to $S\left(3 p_{z}\right)-S\left(3 p_{z}\right)$ and $S\left(3 p_{x}\right)-S\left(3 p_{x}\right)$ bonding in the molecular plane. The $1 b_{2}$ levels represent $S\left(3 p_{y}\right)-S\left(3 p_{y}\right)$ bonding perpendicular to the plane of the molecule (as in allylic-type π bonding). The electron density is relatively evenly distributed over the center sulfur and combined ter-

Figure 5. Contour map of the $1 \pi \pi_{g} \downarrow$ wave function of $S_{2}{ }^{-}(1)$. Beginning with the nodal line through the origin the contours increase to 0.01 . 0.03 . 0.06. and 0.10 (electron $/$ bohr $\left.^{3}\right)^{1 / 2}$. The grid is in bohrs. Discontinuities are the result of noise in the calculation.

Table X. Ground State Energy Levels ${ }^{a}$ (Ry) and Charge Distribution ${ }^{b}$ for $\mathrm{S}_{3}{ }^{2-}$

Level	Energy	$\not \approx \mathrm{S}_{1}$	\% $\mathrm{S}_{2.3}$
$4 \mathrm{~b}_{1}$	-0.114	26.4	31.6
$5 \mathrm{a}_{1}$	-0.150	14.9	25.8
$2 \mathrm{~b}_{2}$	-0.343	28.1	36.3
$3 \mathrm{~b}_{1}$	-0.389	1.1	67.1
$1 \mathrm{a}_{2}$	-0.427	0.6	62.9
$4 \mathrm{a}_{1}$	-0.441	7.1	55.1
$1 \mathrm{~b}_{2}$	-0.559	31.1	24.9
$3 \mathrm{a}_{1}$	-0.584	34.8	31.9
$2 \mathrm{~b}_{1}$	-0.614	31.4	42.0
$2 \mathrm{a}_{1}$	-1.049	29.0	52.7
$1 \mathrm{~b}_{1}$	-1.174	4.6	78.3
$1 \mathrm{a}_{1}$	-1.356	47.6	32.7

${ }^{a}$ The highest occupied level is $2 b_{2} . b$ The remainder of the electronic charge is distributed between the intersphere and extramolecular regions (not listed here).
minal sulfur regions. In the range -0.55 to -0.45 Ry are three essentially nonbonding molecular orbitals. The $4 a_{1}$ and $3 b_{l}$ levels may be described as nonbonding orbitals in the plane of the molecule, while the $1 a_{2}$ level is a nonbonding orbital in the perpendicular plane. In all of these three orbitals, the electronic density is mainly concentrated on the terminal atoms. A very small $\mathrm{d}_{x y}$ contribution from the center sulfur is also observed. The $2 b_{2}, 5 a_{1}$, and $4 b_{1}$ levels in the range -0.45 and -0.10 Ry are tne antibonding counterparts of S-S bonding orbitals of the same symmetry ($1 b_{2}, 3 a_{1}$, and $2 b_{1}$) and, like them, give a fairly even distribution of electronic density over the center sulfur and combined terminal sulfur regions. The $2 b_{2} \uparrow$ and $2 b_{2} \downarrow$ orbitals are the highest occupied and lowest unoccupied levels in the ion. The antibonding character of the $2 b_{2}$ level is readily seen from the contour map in Figure 3. The region of zero electron density between the π orbitals of the two sulfur atoms precludes any orbital overiap or bonding interaction.

The energy-level diagram for $S_{3}{ }^{-}$(1) differs only slightly from that for $\mathrm{S}_{3}{ }^{-}(2)$. The expected qualitative effect of shifting all the energy levels downward in $\mathrm{S}_{3}{ }^{-}$(2) due to the differences in sphere radii and bond lengths is observed, but the quantitative change is quite small, and the level spacings remain practically identical. The free-atom energy lev-

Figure 6. Ground state valence energy levels for $\mathrm{S}_{3}{ }^{2-}$. Corresponding SCF-X α energy levels for the free atoms are shown for comparison. The highest occupied level is $2 \mathrm{~b}_{2}$.

Table XI. Ground State Core Energy Levels (Ry) for $\mathrm{S}_{3}{ }^{2-}$

Level	Energy	Level	Energy
$\mathrm{S}_{1} 1 \mathrm{~s}$	-177.1728	$\mathrm{~S}_{2.3} 1 \mathrm{~s}$	-176.9586
$\mathrm{~S}_{1} 2 \mathrm{~s}$	-15.0627	$\mathrm{~S}_{2,3} 2 \mathrm{~s}$	-14.9266
$\mathrm{~S}_{1} 2 \mathrm{p}$	-11.2796	$\mathrm{~S}_{2,3} 2 \mathrm{p}$	-11.1367

Table XII. Ground State Total Energies (Ry) and Charge Distribution (electrons) for $\mathrm{S}_{3}{ }^{2-}$

Total energy	-2371.729
Kinetic energy	2271.897
Potential energy	-4643.625
Total charge in various regions:	14.307
\quad Center sulfur	14.841
Each terminal sulfur	1.012
Extramolecular	4.999
Intersphere	

els for sulfur are the same in both cases. The effect of the decreased bond length and smaller sphere radii lowers the total energy by 0.521 Ry , or 0.02%. The total charge distribution is altered by a slight decrease in the number of electrons within the atomic regions and a slight increase in the number of electrons within the intersphere and extramolecular regions in going from $\mathrm{S}_{3}{ }^{-}(1)$ to $\mathrm{S}_{3}{ }^{-}$(2). However, it is clear that the main, semiquantitative, chemically significant results are not sensitive to the variation in S-S bond length from 2.00 to $2.10 \AA$. It is thus also not to be expected that a change in the bond angle by $\pm 5^{\circ}$ (i.e., to 105 or 115°) would have any important effect on the results.
The Electronic Structure of $\mathbf{S}_{\mathbf{2}}{ }^{-}$. Again, the sensitivity of the results to choice of bond distance was tested since the exact $\mathrm{S}-\mathrm{S}$ distance is not known.

Inspection of Table VI and Figure 4 shows that the ground state valence energy levels for $S_{2}{ }^{-}$can be considered in three categories. Between -1.50 and -1.35 Ry are the energy levels $1 \sigma_{\mathrm{g}}$ and $1 \sigma_{\mathrm{u}}$ whose provenance is principally ${ }^{-}$ the sulfur 3 s levels. In the range -0.60 to -0.50 Ry are the $2 \sigma_{\mathrm{g}}$ orbital, which is mainly a $\mathrm{S}\left(3 \mathrm{p}_{z}\right)-\mathrm{S}\left(3 \mathrm{p}_{z}\right)$ bonding orbital, and the $1 \pi_{u}$ orbital which may be described as mainly a $\mathrm{S}\left(3 \mathrm{p}_{x, y}\right)-\mathrm{S}\left(3 \mathrm{p}_{x, y}\right)$ bonding orbital, and the $1 \pi_{u}$ orbital

Figure 7. Contour map of the $2 b_{2}$ wave function of $\mathrm{S}_{3}{ }^{2-}$. Beginning with the nodal line between the atoms the contours increase to 0.01 . 0.03 .0 .06 . and 0.10 (electron bohr $\left.^{3}\right)^{1 / 2}$. The grid is in bohrs. Discontinuities are the result of noise in the calculations.
which may be described as mainly a $S\left(3 p_{x, y}\right)-S\left(3 p_{x, y}\right)$ bonding level. The antibonding counterparts, namely $1 \pi_{g}$ and $2 \sigma_{u}$, are in the range -0.50 to -0.40 Ry . The $1 \pi_{\mathrm{g}} \downarrow$ and $2 \pi_{u} \uparrow$ orbitals are the highest occupied and lowest unoccupied levels in the ion. The antibonding character of the $1 \pi \mathrm{~g} \downarrow$ orbital, which has a node between the nuclei, is clearly seen from the contour map, Figure 5.

Comparison of energy-level diagrams for $\mathrm{S}_{2}{ }^{-}$(1) and $\mathrm{S}_{2}{ }^{-}(2)$ shows no significant differences. The expected qualitative effects of shifting all the energy levels upward in $\mathrm{S}_{2}{ }^{-}$(2) due to the differences in sphere radii and bond lengths is observed, but the quantitative change is quite small, and the level spacings remain constant. The freeatom energy levels for sulfur are the same in both cases. The effect of the increased bond length and larger sphere radii raises the total energy by 0.296 Ry , or 0.02%. The total charge distribution is altered by a slight increase in the number of electrons within the atomic regions and a slight decrease in the number of electrons in the intersphere and extramolecular regions in going from $\mathrm{S}_{2}{ }^{-}$(1) to S_{2}^{-}(2).

The Electronic Structure of $\mathbf{S}_{3}{ }^{\mathbf{2 -}}$. Inspection of Table X and Figure 6 shows that the ground state valence energy levels for $\mathrm{S}_{3}{ }^{2-}$ are, as expected, very similar to those for the $\mathrm{S}_{3}{ }^{-}$, ion, and the comments previously made are applicable here as well. The expected qualitative effects of shifting all the energy levels upward in $\mathrm{S}_{3}{ }^{2-}$ because of the extra electron is observed, but the quantitative change is small. The orbital spacing and ordering remain constant. The freeatom energy levels for sulfur also increase by a small amount in going from $\mathrm{S}_{3}{ }^{-}$to $\mathrm{S}_{3}{ }^{2-}$. The effect of the added charge on $\mathrm{S}_{3}{ }^{2-}$ lowers the total energy by approximately 6.021 Ry , or 0.25%. The total charge distribution is altered by a slight increase in the number of electrons within the atomic regions because of the increased charge. This results in a decrease in the number of electrons within the intersphere and extramolecular regions. The contour maps of the $2 b_{2}$ levels of $\mathrm{S}_{3}{ }^{-}$and $\mathrm{S}_{3}{ }^{2-}$ are very similar.

Electronic Spectra. The optical absorption spectrum of the $\mathrm{S}_{3}{ }^{2-}$ ion in aqueous solution has been investigated by Giggenbach, ${ }^{23}$ who finds two bands, at about 24000 and $33000 \mathrm{~cm}^{-1}$. Because the positions and shapes of these bands were obtained by deconvoluting complex superposed

Table XIII. Comparison of Calculated Electronic Transition Energies to Experimental Values of Peak Positions and O -O Bands

Molecule	Transition	$\begin{gathered} \text { Calcd } \\ \text { value }\left(\mathrm{cm}^{-1}\right) \end{gathered}$	Estimated O-O position $\left(\mathrm{cm}^{-1}\right)$	Exptl peak position (cm^{-1})
$\mathrm{S}_{3}-(1)$	$1 \mathrm{a}_{2} \rightarrow 2 \mathrm{~b}_{2}$	10501		
S_{3} - (2)	$1 \mathrm{a}_{2} \rightarrow 2 \mathrm{~b}_{2}$	13190	13500	16000
$\mathrm{S}_{2}-(1)$	$1 \pi_{\mathrm{u}} \rightarrow 1 \pi_{\mathrm{g}}$	20279		
$\mathrm{S}_{2}{ }^{-}(2)$	$1 \pi_{\mathrm{u}} \rightarrow 1 \pi_{\mathrm{g}}$	15846	21000	24000

spectra of several $\mathrm{S}_{x}{ }^{2-}$ species using equilibrium constants which are imprecise, both the peak positions and band widths are less accurately known than one ordinarily expects. The lowest symmetry-allowed electronic transition for $S_{3}{ }^{2-}$ should be due to the orbital excitation $b_{1} \rightarrow a_{1}$, meaning that the transition is $B_{1} \leftarrow A_{1}$. A significant increase in the S-S-S angle for the ${ }^{1} \mathrm{~B}_{1}$ state compared to the ${ }^{1} A_{1}$ ground state might be anticipated from the Walsh diagram ${ }^{35}$ so that Franck-Condon forbiddenness would tend to lower the intensity. Giggenbach's assignments of the $24000-\mathrm{cm}^{-1}$ peak to the ${ }^{1} \mathrm{~B}_{1} \leftarrow{ }^{1} \mathrm{~A}_{1}$ transition and the $33000-\mathrm{cm}^{-1}$ peak to the ${ }^{1} \mathrm{~B}_{2} \rightarrow{ }^{1} \mathrm{~A}_{1}$ transition appear very reasonable.

We predict the energy of the ${ }^{1} \mathrm{~B}_{1} \leftarrow{ }^{1} \mathrm{~A}_{1}\left(2 \mathrm{~b}_{2} \rightarrow 5 \mathrm{a}_{1}\right)$ transition to be $24500 \mathrm{~cm}^{-1}$. In view of the uncertainties in estimating the experimental band peak, mentioned above, and the fact that Franck-Condon effects render the position of the O-O component uncertain, we feel that the agreement with experiment is satisfactory and that this result indicates that our method of calculation is reliable for polysulfide anions.

We therefore turn to a comparison of calculated electronic transition energies with observed spectra for the radical anions $\mathrm{S}_{2}{ }^{-}$and $\mathrm{S}_{3}{ }^{-}$. These comparisons are made in Table XIII. It must be noted first that we are dealing, experimentally, with band envelopes formed by unresolved vibrational progressions and that the band peaks do not correspond to the energy of purely electronic excitation. Instead, the energy of the transition without accompanying vibrational excitation, which is what we are attempting to calculate, should lie approximately at the low-frequency edge of the band envelope. Thus, in Table XIII we give the band maxima and also the estimated energies for the vibrational $\mathrm{O}-\mathrm{O}$ transition. These are obtained from the spectrum shown in Figure 8.

Second, we note that for $\mathrm{S}_{3}{ }^{-}$the lowest energy transition, $3 b_{1} \rightarrow 2 b_{2}$ is not orbitally allowed. The first orbitally allowed transition is $1 \mathrm{a}_{2} \rightarrow 2 \mathrm{~b}_{2}\left({ }^{2} \mathrm{~A}_{2} \leftarrow{ }^{2} \mathrm{~B}_{2}\right)$ with x polarization. For $\mathrm{S}_{2}{ }^{-}$the lowest energy transition, $1 \pi_{u} \rightarrow 1 \pi_{\mathrm{g}}\left({ }^{2} \pi_{u}\right.$ $\leftarrow{ }^{2} \pi_{\mathrm{g}}$), is allowed. It is these two allowed transitions that we wish to compare with the reported visible spectra.

Our results clearly show that over the range of S-S distances ($2.00-2.25 \AA$) within which the correct values must lie, the lowest energy transitions for $\mathrm{S}_{3}{ }^{-}$and $\mathrm{S}_{2}{ }^{-}$are always in the energy order $\nu\left(\mathrm{S}_{2}{ }^{-}\right)>\nu\left(\mathrm{S}_{3}-\right)$, and the separation is consistently about $9500 \mathrm{~cm}^{-1}$. Thus, we conclude that since the $\mathrm{S}_{2}{ }^{-}$and $\mathrm{S}_{3}{ }^{-}$ions together (Figure 8) give rise to bands separated by $8000 \mathrm{~cm}^{-1}$, we must assign the higher energy band to $\mathrm{S}_{2}{ }^{-}$and the lower energy one to $\mathrm{S}_{3}{ }^{-}$. This, in turn indicates that the ubiquitous blue chromophore discussed in the introduction is $\mathrm{S}_{3}{ }^{-}$and not $\mathrm{S}_{2}{ }^{-}$.

The extent to which quantitative agreement can be obtained between the calculated and observed transitions depends on the sulfur-sulfur bond distances used in the calculations. From the vibrational frequencies of S_{2}^{-}and S_{3}^{-}in alkali halide crystals, given by Holzer et al., ${ }^{26}$ we estimate,

Figure 8. Visible absorption spectrum of an alkali halide crystal containing both $\mathrm{S}_{2}{ }^{-}$and $\mathrm{S}_{3}{ }^{-}$ions, adapted from Holzer et al. ${ }^{26}$
using a simple valence force field for the latter, that the $\mathrm{S}-\mathrm{S}$ stretching force constants are very similar in the two cases, namely, about $3.30 \pm 0.05 \mathrm{mdyn} / \AA$. Thus the $\mathrm{S}-\mathrm{S}$ distances in the two ions should be similar. Since a recent ${ }^{-}$ study ${ }^{39}$ suggests that the $\mathrm{S}-\mathrm{S}$ distance in $\mathrm{S}_{2}{ }^{2-}$ is greater than that in $\mathrm{S}_{3}{ }^{2-}$, the same is likely to be true for $\mathrm{S}_{2}{ }^{-}$relative to $\mathrm{S}_{3}{ }^{-}$. If we assume that for $\mathrm{S}_{3}{ }^{-}$the distance is in the range $2.05-2.10 \AA$, the energy of the first allowed transition is predicted to be $12000-13200 \mathrm{~cm}^{-1}$ as compared to an observed value of ca. $13500 \mathrm{~cm}^{-1}$. If for $\mathrm{S}_{2}{ }^{-}$we assume that the S-S distance is in the range $2 \cdot 10-2.20 \AA$, the energy of the first allowed transition is predicted to be in the range $17300-20300 \mathrm{~cm}^{-1}$ as compared to the experimental value of ca. $21000 \mathrm{~cm}^{-1}$. This good agreement of the individual energies, as well as their difference, adds credence to the validity of the calculations and hence to the identification of the $\mathrm{S}_{3}{ }^{-}$ion as the source of the blue color of lapis lazuli, ultramarines, and a multitude of other sulfur-containing systems.

Acknowledgments. We are grateful to Professor J. G. Norman, Jr., of the University of Washington for his very
generous guidance in the use of the computer programs. We thank the Robert A. Welch Foundation for financial support under Grants A106 and A494.

References and Notes

(1) See, for example, A. F. Wells, "Structural Inorganic Chemistry". 3d ed. Oxford University Press. London. 1962. p 816.
(2) C. Nollner, Pogg. Ann., 98. 189 (1856)
(3) C. F. Geitner. Pharm. Ann., 129, 350 (1864).
(4) W. Giggenbach, Inorg. Chem., 10, 1306 (1971).
(5) G. Delarue. Bull. Soc. Chim. Fr., 1654 (1960).
(6) D. M. Gruen. R. L. McBeth, and A. J. Zielen. J. Am. Chem. Soc., 93, 6691 (1971).
(7) H. Lux. S. Benninger, and E. Bohm. Chem. Ber., 101, 2485 (1968).
(8) W. Giggenbach. J. Inorg. Nucl. Chem., 30, 3189 (1969).
(9) H. Lux and A. Anslinger. Chem. Ber., 94, 1161 (1961).
(10) W. Giggenbach. Inorg. Chem., 10, 1308 (1971).
(11) M. V. Merritt and D. T. Sawyer. Inorg. Chem., 9, 211 (1970).
(12) R. Bonnaterre and G. Cauquis. J. Chem. Soc., Chem. Commun., 293 (1972).
(13) L. Schneider. B. Dischler. and A. Rauber. Phys. Status Solidi. 13, 141 (1966).
(14) J. Suwalski and H. Seidel. Phys. Status Solidi. 13, 159 (1966).
(15) R. P. Martin, W. H. Doub. J. L. Roberts. Jr., and D. T. Sawyer. Inorg. Chem., 12, 1921 (1973)
(16) T. Chivers and J. Drummond. Inorg. Chem.. 11, 2525 (1972).
(17) T. Chivers. Nature (London). 252. 32 (1974).
(18) U. Hofmann. E. Herzenstiel. E. Schonemann. and K. Schwarz. Z. Anorg. Allg. Chem. 367, 119 (1969).
(19) A. Teder, Ark. Kemi. 31, 173 (1969).
(20) G. Schwarzenbach and A. Fischer. Helv. Chim. Acta. 43, 1365 (1960).
(21) J. Greenberg. B. R. Sundheim, and D. M. Gruen. J. Chem. Phys., 29, 461 (1958).
(22) F. G. Bodewig and J. A. Plambeck. J. Electrochem. Soc.. 117, 904 (1970).
(23) W. Giggenbach. J. Chem. Soc.. Dalton Trans., 729 (1973).
(24) T. Matsunaga. Can. J. Chem.. 38. 310 (1960).
(25) K. H. Schwarz and U. Hofmann. Z. Anorg. Allg. Chem.. 378, 152 (1970).
(26) W. Holzer, W. F. Murphy, and H. J. Bernstein. J. Mol. Spectrosc., 32, 13 (1969).
(27) J. Rolfe. J. Chem. Phys.. 49. 4193 (1968).
(28) L. E. Vanotti and J. R. Morton. Phys. Rev.. 161, 282 (1967)
29) J. R. Morton, 15th Colloque A.M.P.E.R.E. Grenoble. Sept 1968.
(30) (a) J. C. Slater and K. H. Johnson. Phys. Rev. B. 5, 844 (1972): (b) K. H. Johnson. J. G. Norman, Jr.. and J. W. D. Connolly. "Computational Methods for Large Molecules and Localized States in Solids". Plenum Press. New York. N.Y.. 1972: (c) K. H. Johnson. Adv. Quantum Chem. 7, 143 (1973): (d) J. C. Slater, ibid.. 6. 1 (1972): (e) K. H. Johnson and F. C. Smith. Jr., Phys. Rev. B. 5, 831 (1972).
(31) K. Schwarz. Phys. Rev. B. 5. 2466 (1972)
(32) J. G. Norman, Jr., J. Chem. Phys.. 61, 4630 (1974).
(33) R. E. Watson, Phys. Rev.. 111, 1108 (1958).
(34) J. C. Slater, T. M. Wilson, and J. H. Wood. Phys. Rev., 179, 28 (1969).
(35) A. D. Walsh. J. Chem. Soc., 2266 (1953).
(36) S. C. Abrahams. Acta Crystallogr., 7, 432 (1954).
(37) W. S. Miller and A. J. King. Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem.. 94, 441 (1936).
(38) F. A. Cotton and G. Wilkinson, "Advanced Inorganic Chemistry'. 3d ed., Interscience. New York, N.Y.. 1972.
(39) S. Yamaoka, J. T. Lemley. J. M. Jenks, and H. Steinfink. Inorg. Chem., 14, 129 (1975)

